Homework8

Problem 1 Magnetic scalar "potential"

(a) Consider an infinite straight wire carrying current I. We know that the magnetic field outside the wire is $\vec{B}=\left(\mu_{0} I / 2 \pi r\right) \hat{\theta}$. There are no currents outside the wire, so $\nabla \times \vec{B}=0$; verify this by explicitly calculating the curl.
(b) Since $\nabla \times \vec{B}=0$, we should be able to write \vec{B} as the gradient of a function, $\vec{B}=\nabla \psi$. Find ψ, but then explain why the usefulness of ψ as a potential function is limited.

Problem 2 Field in the plane of a ring

A ring with radius R carries a current I. Show that the magnetic field due to the ring, at a point in the plane of the ring, a distance a from the center (either inside or outside the ring), is given by :

$$
B=2 \cdot \frac{\mu_{0} I}{4 \pi} \int_{0}^{\pi} \frac{(R-a \cos \theta) R d \theta}{\left(a^{2}+R^{2}-2 a R \cos \theta\right)^{3 / 2}}
$$

Hint: The easiest way to handle the cross product in the Biot-Savart law is to write the Cartesian coordinates of $\mathrm{d} \vec{l}$ and \vec{r} in terms of an angle θ in the ring.

Problem 3 Copper solenoid

A solenoid is made by winding two layers of No. 14 copper wire on a cylindrical form 8 cm in diameter. There are four turns per centimeter in each layer, and the length of the solenoid is 32 cm . From the wire tables we find that No. 14 copper wire, which has a diameter of 0.163 cm , has a resistance of $0.010 \Omega / \mathrm{m}$ at $75^{\circ} \mathrm{C}$. (The coil will run hot!) If the solenoid is connected to a 50 V generator, what will be the magnetic field strength at the center of the solenoid in gauss, and what is the power dissipation in watts?

Problem 4 A rotating solid cylinder

(a) A very long cylinder with radius R and uniform volume charge density ρ spins with frequency ω around its axis. What is the magnetic field at a point on the axis?
(b) How would your answer change if all the charge were concentrated on the surface?

