Homework6

Problem 1

By using the relativistic velocity addition law, please directly prove that the 4 - momentum defined as (\vec{p}, p^{0})

$$
\vec{p}=\frac{m_{0} \vec{v}}{\sqrt{1-(v / c)^{2}}}, p^{0}=\frac{m_{0} c}{\sqrt{1-(v / c)^{2}}}
$$

satisfies the Lorentz transformation

$$
\binom{p^{\prime, 1}}{p^{\prime}, 0}=\left(\begin{array}{cc}
\gamma & -\gamma \beta \\
-\gamma \beta & \gamma
\end{array}\right)\binom{p^{1}}{p^{0}}
$$

We suppose that the frame F^{\prime} moves along the x-direction at the velocity u relative the the frame of F. $\beta=u / c$ and $\gamma=1 / \sqrt{1-\beta^{2}}$. The quantities with a prime are the ones measured in the frame F^{\prime}, and those without a prime are measured in the frame F.

You may need to use the following relation.

$$
1-\left(\frac{v^{\prime}}{c}\right)^{2}=\frac{\left(1-\frac{u^{2}}{c^{2}}\right)\left(1-\frac{v^{2}}{c^{2}}\right)}{\left(1-\frac{\vec{u} \cdot \vec{v}}{c^{2}}\right)^{2}}
$$

You are also encouraged to prove this.

Problem 2 Galactic velocities

We observe a galaxy receding in a particular direction at a speed $V=0.3 c$, and another galaxy receding in the opposite direction with the same speed. What speed of recession would an observer in one of these galaxies observe for the other galaxy?

Problem 3 Wavevector and frequency

Prove that the wavevector \vec{k} and frequency ω of a propagating wave combined in the way of

$$
k^{\mu}=\left(\vec{k}, k^{0}=\frac{\omega}{c}\right)
$$

satisfy 4-vector according to the Lorentz transformation.
Please prove it in two di erent ways.

1. You may use the fact that the phase di erence over a space-time interval $(\Delta \vec{x}, t)$, i.e, $\vec{k} \cdot \Delta \vec{x}-\omega \Delta t$ is a Lorentz invariant to prove the above result.
2. Consider a special case that \vec{k} is along the x-direction, and the relative motion between F^{\prime} and F frame is also along x-direction. You may examine how to define wave-lengths and periods in these two different frames.
